The Mathematical Association of America American Mathematics Competitions

 $27^{\text {th }}$ Annual

 $27^{\text {th }}$ Annual

 AMERICAN INVITATIONAL

 AMERICAN INVITATIONAL MATHEMATICS EXAMINATION (AIME I)

SOLUTIONS PAMPHLET

Tuesday, March 17, 2009

This Solutions Pamphlet gives at least one solution for each problem on this year's AIME and shows that all the problems can be solved using precalculus mathematics. When more than one solution for a problem is provided, this is done to illustrate a significant contrast in methods, e.g., algebraic vs geometric, computational vs. conceptual, elementary vs. advanced. The solutions are by no means the only ones possible, nor are they necessarily superior to others the reader may devise.
We hope that teachers inform their students about these solutions, both as illustrations of the kinds of ingenuity needed to solve nonroutine problems and as examples of good mathematical exposition. Routine calculations and obvious reasons for proceeding in a certain way are often omitted. This gives greater emphasis to the essential ideas behind each solution.

> Correspondence about the problems and solutions for this AIME and orders for any of the publications listed below should be addressed to:
> American Mathematics Competitions
> University of Nebraska, P.O. Box 81606
> Lincoln, NE 68501-1606
> Phone: 402-472-2257; Fax: 402-472-6087; email: amcinfo@maa.org
> The problems and solutions for this AIME were prepared by the MAA's Committee on the
> AIME under the direction of:
> Steve Blasberg, AIME Chair
> San Jose, CA 95129 USA

1. (Answer: 840)

For a 3-digit sequence to be geometric, there are numbers a and r such that the terms of the sequence are $a, a r, a r^{2}$. The largest geometric number must have $a \leq 9$. Because both $a r$ and $a r^{2}$ must be digits less than $9, r$ must be a fraction less than 1 with a denominator whose square divides a. For $a=9$, the largest such fraction is $\frac{2}{3}$, and so the largest geometric number is 964 . The smallest geometric number must have $a \geq 1$. Because both $a r$ and $a r^{2}$ must be digits greater than $1, r$ must be at least 2 and so the smallest geometric number is 124 . Thus the required difference is $964-124=840$.
2. (Answer: 697)

Let $z=a+b i$. Then $z=a+b i=(z+n) 4 i=-4 b+4 i(a+n)$. Thus $a=-4 b$ and $b=4(a+n)=4(n-4 b)$. Solving the last equation for n yields $n=\frac{b}{4}+4 b=\frac{164}{4}+4 \cdot 164$, so $n=697$.
3. (Answer: 011)

The conditions of the problem imply that $\binom{8}{3} p^{3}(1-p)^{5}=\frac{1}{25}\binom{8}{5} p^{5}(1-p)^{3}$, and hence $(1-p)^{2}=\frac{1}{25} p^{2}$, so that $1-p=\frac{1}{5} p$. Thus $p=\frac{5}{6}$, and $m+n=11$.
4. (Answer: 177)

Let point S be on $\overline{A C}$ such that $\overline{N S}$ is parallel to $\overline{A B}$. Because $\triangle A S N$ is similar to $\triangle A C D, \frac{A S}{A C}=\frac{A P+P S}{A C}=\frac{A N}{A D}=\frac{17}{2009}$. Because $\triangle P S N$ is similar to $\triangle P A M, \frac{P S}{A P}=\frac{S N}{A M}=\frac{\frac{17}{2009} C D}{\frac{17}{1000} A B}=\frac{1000}{2009}$, and so $\frac{P S}{A P}+1=$ $\frac{3009}{2009}$. Hence $\frac{\frac{17}{2009} A C}{A P}=\frac{3009}{2009}$, and $\frac{A C}{A P}=177$.
5. (Answer: 072)

Because the diagonals of $A P C M$ bisect each other, $A P C M$ is a parallelogram. Thus $\overline{A M}$ is parallel to $\overline{C P}$. Because $\triangle A B M$ is similar to $\triangle L B P$, $\frac{A M}{L P}=\frac{A B}{B L}=1+\frac{A L}{B L}$. Apply the Angle Bisector Theorem in triangle $A B C$ to obtain $\frac{A L}{B L}=\frac{A C}{B C}$. Therefore $\frac{A M}{L P}=1+\frac{A C}{B C}$, and $L P=\frac{A M \cdot B C}{A C+B C}$. Thus $L P=\frac{180 \cdot 300}{450+300}=72$.

6. (Answer: 412)

For a positive integer k, consider the problem of counting the number of integers N such that $x^{\lfloor x\rfloor}=N$ has a solution with $\lfloor x\rfloor=k$. Then $x=\sqrt[k]{N}$, and because $k \leq x<k+1$, it follows that $k^{k} \leq x^{k} \leq(k+1)^{k}-1$. Thus there are $(k+1)^{k}-k^{k}$ possible integer values of N for which the equation $x^{k}=N$ has a solution. Because $5^{4}<1000$ and $5^{5}>1000$, the desired number of values of N is $\sum_{k=1}^{4}\left[(k+1)^{k}-k^{k}\right]=1+5+37+369=412$.
7. (Answer: 041)

Rearranging the given equation and taking the logarithm base 5 of both sides yields

$$
a_{n+1}-a_{n}=\log _{5}(3 n+5)-\log _{5}(3 n+2)
$$

Successively substituting $n=1,2,3, \ldots$ and adding the resulting equations produces $a_{n+1}-1=\log _{5}(3 n+5)-1$. Thus the closed form for the sequence is $a_{n}=\log _{5}(3 n+2)$, which is an integer only when $3 n+2$ is a positive integer power of 5 . The least positive integer power of 5 greater than 1 of the form $3 k+2$ is $5^{3}=125=3 \cdot 41+2$, so $k=41$.
8. (Answer: 398)

For $n \geq 1$, let T_{n} denote the sum of all positive differences of all pairs of elements of the set $\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{n}\right\}$. Given two elements in this set, if neither equals 2^{n}, then the difference of these elements contributes to the $\operatorname{sum} T_{n-1}$. Thus

$$
\begin{aligned}
T_{n} & =T_{n-1}+\left(2^{n}-2^{n-1}\right)+\left(2^{n}-2^{n-2}\right)+\cdots+\left(2^{n}-2^{0}\right) \\
& =T_{n-1}+n \cdot 2^{n}-\left(2^{n}-1\right)
\end{aligned}
$$

By applying this recursion repeatedly, it follows that

$$
\begin{aligned}
T_{n} & =\sum_{k=1}^{n}\left(k \cdot 2^{k}-2^{k}+1\right) \\
& =\sum_{k=1}^{n} k \cdot 2^{k}-\sum_{k=1}^{n} 2^{k}+\sum_{k=1}^{n} 1 \\
& =\left(\sum_{k=1}^{n} k \cdot 2^{k}\right)-\left(2^{n+1}-2\right)+n \\
& =\left(\sum_{k=1}^{n}\left(\sum_{i=k}^{n} 2^{i}\right)\right)-\left(2^{n+1}-2\right)+n \\
& =\left(\sum_{k=1}^{n} \frac{2^{k}\left(2^{n-k+1}-1\right)}{2-1}\right)-\left(2^{n+1}-2\right)+n \\
& =\left(\sum_{k=1}^{n}\left(2^{n+1}-2^{k}\right)\right)-\left(2^{n+1}-2\right)+n \\
& =n \cdot 2^{n+1}-\left(2^{n+1}-2\right)-\left(2^{n+1}-2\right)+n \\
& =(n-2) 2^{n+1}+n+4 .
\end{aligned}
$$

Setting $n=10$ gives $T_{10}=2^{14}+14=16398$. Thus the required remainder is 398 .
9. (Answer: 420)

The number of possible orderings of the given seven digits is $\frac{7!}{4!3!}=35$. These 35 orderings correspond to 35 seven-digit numbers, and the digits of each number can be subdivided to represent a unique combination of guesses for A, B, and C. Thus, for a given ordering, the number of guesses it represents is the number of ways to subdivide the seven-digit number into three nonempty sequences, each with no more than four digits. These subdivisions have possible lengths $1|2| 4,2|2| 3,1|3| 3$, and their permutations. The first subdivision can be ordered in 6 ways and the second and third in 3 ways each, for a total of 12 possible subdivisions. Thus the total number of guesses is $35 \cdot 12$ or 420 .
10. (Answer: 346)

Each acceptable seating arrangement can be specified in two steps. The first step is to assign a planet to each chair according to the committee rules. The second step is to assign an individual from the appropriate planet to each seat. Because the committee members from each planet can be seated in any of 5 ! ways, the second step can be completed in $(5!)^{3}$ ways. Thus N is the number of ways in which the first step can be completed.
In clockwise order around the table, every group of one or more Martians seated together must be followed by a group of one or more Venusians and then a group of one or more Earthlings. Thus the possible assignments of planets to chairs are in one-to-one correspondence with all sequences of positive integers $m_{1}, v_{1}, e_{1}, \ldots, m_{k}, v_{k}, e_{k}$ with $1 \leq k \leq 5$ and $m_{1}+\cdots+$ $m_{k}=v_{1}+\cdots+v_{k}=e_{1}+\cdots+e_{k}=5$. For each k, the number of ordered k-tuples $\left(m_{1}, \ldots, m_{k}\right)$ with $m_{1}+\cdots+m_{k}=5$ is $\binom{4}{k-1}$ as are the numbers of ordered k-tuples $\left(v_{1}, \ldots, v_{k}\right)$ with $v_{1}+\cdots+v_{k}=5$ and $\left(e_{1}, \ldots, e_{k}\right)$ with $e_{1}+\cdots+e_{k}=5$. Hence the number of possible assignments of planets to chairs is

$$
N=\sum_{k=1}^{5}\binom{4}{k-1}^{3}=1^{3}+4^{3}+6^{3}+4^{3}+1^{3}=346
$$

11. (Answer: 600)

First note that the distance from $(0,0)$ to the line $41 x+y=2009$ is

$$
\frac{|41 \cdot 0+0-2009|}{\sqrt{41^{2}+1^{2}}}=\frac{2009}{29 \sqrt{2}},
$$

and that this distance is the altitude of any of the triangles under consideration. Thus such a triangle has integer area if and only if its base is an even multiple of $29 \sqrt{2}$. There are 50 points with nonnegative integer coefficients on the given line, namely, $(0,2009),(1,1968),(2,1927), \ldots,(49,0)$, and the distance between any two consecutive points is $29 \sqrt{2}$. Thus a triangle has positive integer area if and only if the base contains $3,5,7, \ldots$, or 49 of these points, with the two outermost points being vertices of the triangle. The number of bases with one of these possibilities is

$$
48+46+44+\cdots+2=\frac{24 \cdot 50}{2}=600
$$

OR
Assume that the coordinates of P and Q are $\left(x_{0}, y_{0}\right)$ and $\left(x_{0}+k, y_{0}-41 k\right)$, where x_{0} and y_{0} are nonnegative integers such that $41 x_{0}+y_{0}=2009$, and
k is a positive integer. Then the area of $\triangle O P Q$ is the absolute value of

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{ccc}
x_{0}+k & y_{0}-41 k & 1 \\
x_{0} & y_{0} & 1 \\
0 & 0 & 1
\end{array}\right|=\left|\frac{1}{2}\left(x_{0} y_{0}+k y_{0}-x_{0} y_{0}+41 k x_{0}\right)\right| \\
& =\left|\frac{1}{2} k\left(41 x_{0}+y_{0}\right)\right|=\left|\frac{1}{2} \cdot 2009 k\right| .
\end{aligned}
$$

Thus the area is an integer if and only if k is a positive even integer. The points P_{i} with coordinates $(i, 2009-41 i), 0 \leq i \leq 49$, represent exactly the points with nonnegative integer coordinates that lie on the line with equation $41 x+y=2009$. There are 50 such points. The pairs of points $\left(P_{i}, P_{j}\right)$ with $j-i$ even and $j>i$ are in one-to-one correspondence with the triangles $O P Q$ having integer area. Thus $j-i=2 p, 1 \leq p \leq 24$ and for each possible value of p, there are $50-2 p$ pairs of points $\left(P_{i}, P_{j}\right)$ meeting the conditions that P_{i} and P_{j} are points on $41 x+y=2009$ with $j-i$ even and $j>i$. Thus the number of such pairs and the number of triangles $O P Q$ with integer area is

$$
\sum_{p=1}^{24}(50-2 p)=\sum_{q=1}^{24} 2 q=2 \cdot \frac{24 \cdot 25}{2}=600
$$

12. (Answer: 011)

Let E and F be the points of tangency on $\overline{A I}$ and $\overline{B I}$, respectively. Let $I E=I F=x, A E=A D=y, B D=B F=z, r=$ the radius of the circle $\omega, C D=h$, and k be the area of triangle $A B I$. Then $h=\sqrt{y z}$, and so $r=\frac{1}{2} \sqrt{y z}$. Let s be the semiperimeter of $\triangle A B I$, so that $s=x+y+z$. On one hand $k=s r=\frac{1}{2}(x+y+z) \sqrt{y z}$, and on the other hand, by Heron's Formula, $k=\sqrt{(x+y+z) x y z}$. Equating these two expressions and simplifying yields $4 x=x+y+z$, or $4 x=x+A B$. Thus $x=\frac{A B}{3}$ and $2 s=2 \cdot \frac{A B}{3}+2 \cdot A B=\frac{8}{3} \cdot A B$. Hence $m+n=8+3=11$.
13. (Answer: 090)

The definition gives
$a_{3}\left(a_{2}+1\right)=a_{1}+2009, \quad a_{4}\left(a_{3}+1\right)=a_{2}+2009, \quad a_{5}\left(a_{4}+1\right)=a_{3}+2009$.
Subtracting adjacent equations yields $a_{3}-a_{1}=\left(a_{3}+1\right)\left(a_{4}-a_{2}\right)$ and $a_{4}-a_{2}=\left(a_{4}+1\right)\left(a_{5}-a_{3}\right)$. Suppose that $a_{3}-a_{1} \neq 0$. Then $a_{4}-a_{2} \neq 0$, $a_{5}-a_{3} \neq 0$, and so on. Because $\left|a_{n+2}+1\right| \geq 2$, it follows that $0<$ $\left|a_{n+3}-a_{n+1}\right|=\frac{\left|a_{n+2}-a_{n}\right|}{\left|a_{n+2}+1\right|}<\left|a_{n+2}-a_{n}\right|$, that is, $\left|a_{3}-a_{1}\right|>\left|a_{4}-a_{2}\right|>$ $\left|a_{5}-a_{3}\right|>\cdots$, which is a contradiction. Therefore $a_{n+2}-a_{n}=0$ for all $n \geq 1$, which implies that all terms with an odd index are equal, and all
terms with an even index are equal. Thus as long as a_{1} and a_{2} are integers, all the terms are integers. The definition of the sequence then implies that $a_{1}=a_{3}=\frac{a_{1}+2009}{a_{2}+1}$, giving $a_{1} a_{2}=2009=7^{2} \cdot 41$. The minimum value of $a_{1}+a_{2}$ occurs when $\left\{a_{1}, a_{2}\right\}=\{41,49\}$, which has a sum of 90 .
14. (Answer: 905)

For $j=1,2,3,4$, let m_{j} be the number of a_{i} 's that are equal to j. Then

$$
\begin{aligned}
m_{1}+m_{2}+m_{3}+m_{4} & =350, \\
S_{1}=m_{1}+2 m_{2}+3 m_{3}+4 m_{4} & =513, \text { and } \\
S_{4}=m_{1}+2^{4} m_{2}+3^{4} m_{3}+4^{4} m_{4} & =4745 .
\end{aligned}
$$

Subtracting the first equation from the second, then the first from the third yields

$$
\begin{aligned}
m_{2}+2 m_{3}+3 m_{4} & =163, \text { and } \\
15 m_{2}+80 m_{3}+255 m_{4} & =4395 .
\end{aligned}
$$

Now subtracting 15 times the first of these equations from the second yields $50 m_{3}+210 m_{4}=1950$ or $5 m_{3}+21 m_{4}=195$. Thus m_{4} must be a nonnegative multiple of 5 , and so m_{4} must be either 0 or 5 . If $m_{4}=0$, then the m_{j} 's must be $(226,85,39,0)$, and if $m_{4}=5$, then the m_{j} 's must be $(215,112,18,5)$. The first set of values results in $S_{2}=$ $1^{2} \cdot 226+2^{2} \cdot 85+3^{2} \cdot 39+4^{2} \cdot 0=917$, and the second set of values results in $S_{2}=1^{2} \cdot 215+2^{2} \cdot 112+3^{2} \cdot 18+4^{2} \cdot 5=905$. Thus the minimum value is 905 .
15. (Answer: 150)

Note that

$$
\angle B I_{B} D=\angle I_{B} B A+\angle B A D+\angle A D I_{B}=\angle B A D+\frac{\angle D B A}{2}+\frac{\angle A D B}{2}
$$

and

$$
\angle C I_{C} D=\angle I_{C} D A+\angle D A C+\angle A C I_{C}=\angle D A C+\frac{\angle C D A}{2}+\frac{\angle A C D}{2} .
$$

Because $\angle B A D+\angle D A C=\angle B A C$ and $\angle A D B+\angle C D A=180^{\circ}$, it follows that

$$
\begin{align*}
\angle B I_{B} D+\angle C I_{C} D & =\angle B A C+\frac{\angle A C D}{2}+\frac{\angle D B A}{2}+90^{\circ} \tag{1}\\
& =180^{\circ}+\frac{\angle B A C}{2} .
\end{align*}
$$

The points P and I_{B} must lie on opposite sides of $\overline{B C}$, and $B I_{B} D P$ and $C I_{C} D P$ are convex cyclic quadrilaterals. If P and I_{B} were on the same side, then both $B I_{B} P D$ and $C I_{C} P D$ would be convex. It would then follow by (1) and the fact that quadrilaterals $B I_{B} P D$ and $C I_{C} P D$ are cyclic that
$\angle B P C=\angle B P D+\angle D P C=\angle B I_{B} D+\angle C I_{C} D=180^{\circ}+\frac{\angle B A C}{2}>180^{\circ}$,
which is impossible.
By (1),

$$
\begin{aligned}
\angle B P C & =\angle B P D+\angle D P C=180^{\circ}-\angle B I_{B} D+180^{\circ}-\angle C I_{C} D \\
& =180^{\circ}-\frac{\angle B A C}{2}
\end{aligned}
$$

Therefore, $\angle B P C$ is constant, and so P lies on the arc of a circle passing through B and C.
The Law of Cosines yields $\cos \angle B A C=\frac{10^{2}+16^{2}-14^{2}}{2 \cdot 10 \cdot 16}=\frac{1}{2}$, and so $\angle B A C=$ 60°. Hence $\angle B P C=150^{\circ}$, and the minor arc subtended by the chord $B C$ measures 60°. Thus the radius of the circle is equal to $B C=14$. The maximum area of $\triangle B P C$ occurs when $B P=P C$. Applying the Law of Cosines to $\triangle B P C$ with $B P=P C=x$ yields $14^{2}=2 x^{2}+x^{2} \sqrt{3}$, so $x^{2}=\frac{196}{2+\sqrt{3}}=196(2-\sqrt{3})$. The area of this triangle is $\frac{1}{2} x^{2} \sin 150^{\circ}=$ $98-49 \sqrt{3}$, and so $a+b+c=150$.

The

American Mathematics Competitions

are Sponsored by

The Mathematical Association of America
 The Akamai Foundation

Contributors
Academy of Applied Sciences
American Mathematical Association of Two-Year Colleges
American Mathematical Society
American Society of Pension Actuaries
American Statistical Association
Art of Problem Solving
Awesome Math
Canada/USA Mathcamp
Casualty Actuarial Society
Clay Mathematics Institute
IDEA Math
Institute for Operations Research and the Management Sciences
L. G. Balfour Company

Mathpath
Math Zoom Academy
Mu Alpha Theta
National Assessment \& Testing
National Council of Teachers of Mathematics
Pedagoguery Software Inc.
Pi Mu Epsilon
Society of Actuaries
U.S.A. Math Talent Search
W. H. Freeman and Company

Wolfram Research Inc.

