Rational/Irrational

The Real Number System:

Whole Numbers: 0, 1, 2, 3, 4, ...

Integers: Positive and negative whole numbers: ... -2, -1, 0, 1, ... **Rational Numbers:** Can be expressed as a fraction.

This includes all repeating or terminating decimals.

Ex.
$$0.\overline{23}$$
 $\frac{1}{3}$ 2.25 $5\frac{2}{7}$ 17

Irrational Numbers: Cannot be expressed as a fraction with integer numerator and denominator. This includes pi and most square roots (that cannot be simplified into fractions).

Ex.
$$\pi$$
 $\frac{\sqrt{13}}{3}$ 2.12345... $\sqrt{23}$

Practice:

Place each number where it belongs in the chart below:

Cube Roots:

A cube roots works similarly to a square root. If $a = b^2$, then *b* is a square root of *a*. If $a = b^3$, then *b* is a **cube root** of *a*.

Some are rational: $\sqrt[3]{27} = 3$, $\sqrt[3]{125} = 5$, and $\sqrt[3]{1000} = 10$.

Some are irrational: $\sqrt[3]{20} = 2.714...$, $\sqrt[3]{85} = 4.396...$, and $\sqrt[3]{2} = 1.259...$

Rational/Irrational

Practice:

Find the value of x to the nearest thousandth, then classify the numbers below with all that apply: rational, irrational, integer, and/or whole number.

Math 8

Volume:

3cm³

1. $x = \sqrt{20}$ 2. $x = \sqrt[3]{64}$ 3. $x = 2 + \sqrt{3}$ 4. (right triangle) 5. (square) 5. $x = \frac{1}{\sqrt{3}}$ 5. $\frac{1}{5}$

Area:

Volume:

1331cm³

The term square root comes from the fact that if you know the area of a square, the square root of the area is the side length. For example, if a square has an area of 25cm², then the sides must be 5cm long.

Practice: Find the length of the sides of each square (round to the nearest thousandth where necessary) based on the given areas.

Volume:

144cm³

Name_

Period_

Irrational Numbers

Math 8

Write each number below in the appropriate part of the diagram. DO NOT change the way the numbers are written, leave them as they are.

Name_

Irrational Numbers

Think you can learn this material without practicing? THAT is irrational.

Practice:

Find the side length of each square below based on the given area. Round to the thousandth where necessary.

Practice:

Find each cube root. ALL of these answers are rational.

9. $\sqrt[3]{1.331}$ **10.** $\sqrt[3]{195,112}$ **11.** $\sqrt[3]{-27}$

Solve:

- **12.** The volume of a cube is 64cm³. What is the length of the cube's edges?
- **13.** A square has 10cm sides. The diagonal length of the same square is between what two integers?
- 14. Order these three values from least to greatest: $\sqrt[3]{1.5}$, 1.12345... , $\sqrt{1.4}$.

15. Solve: $1^3 + 2^3 + 3^3 + 4^3 + 5^3 - (1 + 2 + 3 + 4 + 5)^2 =$

12.____

13.____

14.

Ordering Rationals and Irrationals

To be able to order rational numbers, you must be able to order decimals.

Example: Place the following decimals in order from least to greatest.

5.3 5.3456... 5.25 5.25

Practice:

List each set in order from least to greatest.

1.41.2 $41.\overline{2}$ 4.1234...40.92.9.49.3459.5439.343. $\sqrt{45}$ $6.\overline{78}$ $6.7\overline{89}$ $6\frac{7}{9}$

To order a list of numbers, it is easiest to write them all in the same form (usually decimal form) first. Line-up the decimal points and compare.

Example: Order from least to greatest.

$\sqrt{40}$	6.32455	$6.29960 = \sqrt[3]{250}$
6.321 becomes	6.32100 and we order these	6.32100 = 6.321
6.321	6.32132	$6.32132 = 6.\overline{321}$
³ √250	6.29960	$6.32455 = \sqrt{40}$

Math 8

Practice:

List each set in order from least to greatest.

1. 4.5
$$\frac{17}{4}$$
 4. $\overline{4}$ $\sqrt{20}$
2. $\frac{\sqrt{2}}{2}$ 0. $\overline{70}$ 0.7 $\sqrt[3]{0.35}$

Practice:

List the values w through z from least to greatest (all figures are squares).

			Name		Period			
Ordering Numbers Math 8								
Practice: Order each set of three numbers from least to greatest.								
1		2			3			
A. $\sqrt[3]{25}$		A . 4	4.567		A. 5/9			
B . $\sqrt{10}$		B. ³	$\sqrt{94}$		B. $2 - \sqrt{2}$			
c. 3.1		C. ~	$\sqrt{21}$		c . $\sqrt[3]{0.2}$			
4		5			6			
A. $\frac{\sqrt{2}}{2}$		A.	$97\frac{1}{3}$		A . 12.345			
в . √0.5		B. ^	√9 , 475		B. $\sqrt{\frac{762}{5}}$			
c. $\frac{1}{\sqrt{2}}$		C. ($58\sqrt{2}$		c . 4π			
Place each value below in its approximate place on the number line drawn:								
7 . A . $\frac{27}{7}$	в . √19	c . ³ √−14	d . $1 - \sqrt{2}$	$\mathbf{E} \cdot \frac{2\sqrt{7}}{3}$	$\mathbf{F}.\sqrt{1+\sqrt{64}}$			
-5 -4 -3	-2 -1	0 1	2 3	4 5	6 7 8			
8 . A . $\frac{7}{13}$	B .1 – $\sqrt{3}$	c . ³ √0.73	D. $\sqrt{\frac{2}{9}}$	$\mathbf{E}.\frac{\sqrt{5}-4}{3}$	$\mathbf{F}.\sqrt{1-\sqrt{2-\sqrt{3}}}$			

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2