

To square a number, multiply the number by itself.

Practice: Solve.

1.
$$12^2$$
 2. 0.6^2 **3.** $(-9)^2$ **4.** $\left(\frac{10}{11}\right)^2$

Squares and Square Roots are Inverse Operations.

If $x^2 = y$ then x is a square root of y.

Every positive number has two square roots. You will only need to indicate the positive square root of a number unless this symbol appears before the radical:

 $\pm \sqrt{}$

Practice: Solve without a calculator.

1. $\sqrt{49}$ 2. $\sqrt{0.25}$ 3. $\sqrt{\frac{4}{9}}$ 4. $\pm \sqrt{810,000}$

The following square roots should be easy to calculate in your head. Double check by squaring your answer.

Practice: Solve without a calculator.

1. $\sqrt{12,100}$ 2. $\sqrt{0.16}$ 3. $\sqrt{10,000}$ 4. $\sqrt{1.44}$ 5. $\sqrt{0.0001}$ 6. $\sqrt{640,000}$

How about $\sqrt{49,000}$?

Simplifying radical expressions.

There are several easy rules you must know for simplifying square roots.

Fractions:

$$\sqrt{\frac{49}{64}} = \frac{\sqrt{49}}{\sqrt{64}} = \frac{7}{8} \qquad \qquad \sqrt{\frac{100}{9}} = \frac{10}{3} \qquad \qquad \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Products:

$$\sqrt{81 \cdot 121} = \sqrt{81} \cdot \sqrt{121} = 9 \cdot 11 = 99 \qquad \sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

Practice: Solve without a calculator.

1.
$$\sqrt{\frac{9}{100}}$$

2. $\sqrt{25 \cdot 144}$
3. $\sqrt{\frac{169}{400}}$
4. $\sqrt{\frac{25}{6,400}}$
5. $\sqrt{32 \cdot 50}$ (tricky... think!)

Simplifying irrational radical expressions.

Irrational numbers are non-terminating, non-repeating decimals. Some square roots cannot be simplified into integers, fractions, or decimals.

Example: Simplify.

- 1. $\sqrt{40}$ 2. $\sqrt{75}$ 3. $\sqrt{\frac{18}{25}}$ Practice: Simplify.
- 1. $\sqrt{490}$ 2. $\sqrt{99}$ 3. $\sqrt{\frac{48}{49}}$

Multiplying Radical Expressions.

Use the rules we have discovered to simplify these more difficult expressions.

Examples: Simplify.

1. $2\sqrt{5} \cdot 3\sqrt{15}$ 2. $\sqrt{35} \cdot 3\sqrt{5}$ 3. $\sqrt{\frac{6}{35}} \cdot \sqrt{\frac{50}{21}}$

Practice: Simplify.

1.
$$5\sqrt{3} \cdot 2\sqrt{15}$$
 2. $\sqrt{18} \cdot 2\sqrt{6}$ 3. $\sqrt{\frac{49}{10}} \cdot \sqrt{\frac{5}{18}}$

Period ____

Squares and Square Roots

Practice: Simplify completely. All answers should be left in radical form. DO NOT USE A CALCULATOR.

1.
$$\sqrt{1.21} =$$
 2. $\sqrt{4,900} =$

3.
$$\sqrt{36 \cdot 81} =$$
 4. $\sqrt{16 \cdot 169} =$

5.
$$\sqrt{32} =$$
 6. $\sqrt{75} =$

7.
$$\sqrt{\frac{25}{64}} =$$
 8. $\frac{\sqrt{4}}{\sqrt{144}} =$

9.
$$\sqrt{\frac{1}{9}} =$$
 10. $3\sqrt{490} =$

11.
$$2\sqrt{3} \cdot 5\sqrt{15} =$$
 12. $2\sqrt{5} \cdot 3\sqrt{10} =$

Practice: Simplify completely. All answers should be left in radical form. DO NOT USE A CALCULATOR.

13.
$$\sqrt{150}$$
 14. $\sqrt{810}$

15.
$$\frac{\sqrt{8}}{\sqrt{50}}$$

6.
$$\frac{4\sqrt{3}}{\sqrt{75}}$$

17. $\frac{\sqrt{5}}{\sqrt{20}} =$

18.
$$\frac{\sqrt{45}}{\sqrt{5}} =$$

19. $\frac{\sqrt{15}}{\sqrt{60}}$

21.
$$\frac{\sqrt{2}}{\sqrt{15}} \cdot \frac{\sqrt{12}}{\sqrt{5}}$$
 22. $\frac{\sqrt{15}}{\sqrt{98}} \cdot \frac{\sqrt{18}}{\sqrt{5}}$

Math 8

1

You can also simplify square roots which include variables: For example, try the following:

$$\sqrt{x^2}$$

Note: This actually works only when x is positive, for example, $\sqrt{(-7)^2} \neq -7$

For our practice, we will assume that x represents a positive value. You could also say that $\sqrt{x^2} = \pm x$, but we will avoid this notation for now.

Examples:

- 1. What about $\sqrt{\chi^4}$?
- 2. Now try $\sqrt{\chi^{16}}$ but be careful!
- 3. How could you simplify $\sqrt{\chi^{25}}$?

Practice:

Don't be tricked by these easy ones!

Examples: Simplify.

1.
$$\sqrt{x^6}$$
 2. $\sqrt{x^{100}}$ 3. $\sqrt{x^{49}}$ 4. $\sqrt{9x^2y^3}$ 5. $\sqrt{\frac{1}{4x^2y^6}}$
Practice: Simplify.

1.
$$\sqrt{x^{12}}$$
 2. $\sqrt{x^{10}}$ 3. $\sqrt{x^{81}}$ 4. $\sqrt{300x^6}$ 5. $\sqrt{\frac{25x^2}{4}}$

Practice: Simplify completely. All answers should be left in radical form. Begin by writing each as a product of perfect squares where necessary.

1. $\sqrt{x^{6}}$	2 . $\sqrt{a^{18}}$
3 . $\sqrt{c^{12}}$	4. $\sqrt{\mathcal{Y}^{40}}$
5. $\sqrt{x^2y^2}$	6. $\sqrt{16x^{16}}$
7. $\sqrt{4x}$	8. $\sqrt{18a^{24}}$
9. $\sqrt{C^{144}}$	10 . $\sqrt{y^{25}}$
11. $\sqrt{250x^2}$	12. $\sqrt{40x^{10}}$
13. $\frac{\sqrt{20x^{12}}}{\sqrt{25}}$	14. $\frac{\sqrt{x^{12}}}{\sqrt{y^{10}}}$
15. $\frac{\sqrt{18x^8}}{\sqrt{9}}$	16. $\frac{\sqrt{2a^2}}{\sqrt{8b^6}}$

17. $\sqrt{3x} \cdot \sqrt{12x^3}$ 18. $\sqrt{11ab} \cdot \sqrt{11a^5b^7}$

Rationalizing the Denominator

Simplified Radicals must NOT have a radical in the denominator. Removing the radical is called Rationalizing the Denominator.

Examples: Simplify.

1.
$$\frac{3}{\sqrt{5}}$$
 2. $\sqrt{\frac{1}{2}}$ 3. $\sqrt{\frac{35}{112}}$

Practice: Simplify.

1. $\frac{3}{\sqrt{15}}$ 2. $\sqrt{\frac{3}{8}}$ 3. $\sqrt{\frac{12}{21}}$

4.
$$\frac{3}{\sqrt{2}} \cdot \frac{\sqrt{5}}{4}$$
 5. $\sqrt{\frac{8x}{5}} \cdot \sqrt{\frac{2x}{3y}}$

Combining Like Radicals

Examples: Simplify.

1. $3\sqrt{5} + 7\sqrt{5}$ **2.** $4\sqrt{7} - \sqrt{7}$ **3.** $\sqrt{24} + \sqrt{150}$

Practice: Simplify.

1. $6\sqrt{2} + \sqrt{2}$ **2.** $7\sqrt{3} - \sqrt{48}$ **3.** $\sqrt{20} + \sqrt{45}$

Harder Practice: Simplify.

1.
$$\frac{5\sqrt{3} + \sqrt{3}}{2}$$
 2. $\frac{5\sqrt{2}}{7} + \frac{2\sqrt{2}}{7}$ 3. $\frac{\sqrt{12}}{7} + \frac{\sqrt{27}}{14}$

Radicals Quiz Review Simplify:

100.
$$\sqrt{75}$$

200. $2\sqrt{6} \cdot 3\sqrt{30}$
300. $\sqrt{\frac{2}{5}} \cdot \sqrt{\frac{3}{10}}$
400. $\sqrt{\frac{5}{8}} \cdot \sqrt{\frac{12}{2}}$

Addition/Subtraction (Like Terms):

Simplify each:

100. $2\sqrt{5} + 3\sqrt{5}$ 200. $\sqrt{8} + \sqrt{18}$ 300. $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{3}$ 400. $\sqrt{75} - \sqrt{12} + \sqrt{48}$

Rationalizing the Denominator:

Simplify and Rationalize each denominator.

100.
$$\frac{4}{\sqrt{5}}$$
 200. $\sqrt{\frac{40}{3}}$

300.
$$\frac{2}{\sqrt{3}} + \frac{7}{\sqrt{3}}$$
 400. $\frac{\sqrt{14}}{7} + \frac{3}{\sqrt{14}}$

Name_

Period _

Radicals Practice Quiz

Simplify each: Answers should be in simplest radical form. Rationalize all denominators. CALCULATORS WILL NOT BE ALLOWED ON THIS QUIZ.

1.	√121	1
2.	$\sqrt{2,500}$	2
3.	$\sqrt{\frac{4}{9}}$	
		3
4.	$\sqrt{44}$	4
5.	$\sqrt{a^6}$ (Assume $a > 0$)	5
	$\sqrt{12} \cdot \sqrt{3}$	6
7.	$\sqrt{\frac{18}{49}}$	7
	$\sqrt{\frac{9}{11}}$	7
8.	V11	8

Name

Period

Math 8

Radicals Practice Quiz

Simplify each: Answers should be in simplest radical form. Rationalize all denominators. CALCULATORS WILL NOT BE ALLOWED ON THIS QUIZ.

9. $\sqrt{25 \cdot 49}$ 9. _____ 10. $\sqrt{\frac{32}{81}}$ 10. _____ 11. $\sqrt{4x^5y^{16}}$ 11. _____ 12. $\sqrt{8a^6}$ 12. _____ 13. $\sqrt{12} + 5\sqrt{3}$ 13. _____ 14. $\sqrt{72} - \sqrt{50}$ 14. _____ 15. $\sqrt{2}(\sqrt{6} + \sqrt{24})$ 15. _____

Practice: Simplify completely. All answers should be left in radical form. DO NOT USE A CALCULATOR.

1. $\sqrt{121} =$	2 . $\sqrt{0.36} =$
3 . $\sqrt{1.44} =$	4. $\sqrt{225} =$
5. $\sqrt{60} =$	6. $\sqrt{50} =$
7. $\sqrt{40} =$	8. $\sqrt{27} =$
9. $\sqrt{144 \cdot 25} =$	10. $\sqrt{21 \cdot 6} =$
11. $\sqrt{9 \cdot 225} =$	12 . $\sqrt{30 \cdot 18} =$
13 . $\sqrt{11 \cdot 22} =$	$14. \ \sqrt{2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5} =$
15. $\sqrt{\frac{36}{49}} =$	16. $\sqrt{\frac{4}{169}} =$
17. $\sqrt{\frac{5}{25}} =$	18. $\sqrt{\frac{11}{44}} =$
19. $\sqrt{\frac{27}{64}} =$	20. $\sqrt{\frac{12}{25}} =$
21. $\sqrt{\frac{12}{3}} =$	22. $\frac{\sqrt{5}}{\sqrt{7}} =$
23. $\sqrt{\frac{49}{3}} =$	24 . $\frac{8}{\sqrt{2}} =$
25. $\sqrt{\frac{13}{32}} =$	26. $\sqrt{\frac{16}{15}} \cdot \frac{\sqrt{3}}{\sqrt{8}} =$

<u>11.1</u>

Practice: Simplify completely. All answers should be left in radical form. DO NOT USE A CALCULATOR.

27. $\sqrt{x^6} =$	28. $\sqrt{x^7} =$
29 . $\sqrt{x^8} =$	30 . $\sqrt{x^9} =$
31 . $\sqrt{xy^2} =$	32 . $\sqrt{x^{25}y^{49}} =$
33. $\sqrt{4x^3} =$	34. $\sqrt{12x^9y^2} =$
$35. \ \sqrt{144x} \cdot \sqrt{x} =$	$36. \ \sqrt{21x} \cdot \sqrt{7x^9} =$
37. $3\sqrt{2} + 2\sqrt{2} =$	38 . $\sqrt{12} + 5\sqrt{3} =$
39 . $\sqrt{54} + \sqrt{24} =$	40 . $\sqrt{9x} + \sqrt{4x} =$
41. $\sqrt{\frac{x^2}{y^4}} =$	42. $\sqrt{\frac{4x^9}{25}} =$
43. $\sqrt{\frac{a^9}{a^7}} =$	44. $\sqrt{\frac{1}{a^{8}}} =$
$45. \ \frac{\sqrt{x}}{\sqrt{4x}} =$	$46. \ \sqrt{\frac{12xy}{3y}} =$
47. $\frac{2}{\sqrt{x}} =$	48 . $2\sqrt{7}(\sqrt{7}-2) =$
49. $\frac{36\sqrt{2}+8\sqrt{3}}{4} =$	50. $(\sqrt{3} - 4\sqrt{2})(\sqrt{3})$

50.
$$(\sqrt{3} - 4\sqrt{2})(\sqrt{3} + 4\sqrt{2}) =$$

<u>11.1</u>

Practice: Simplify completely. All answers should be left in radical form. DO NOT USE A CALCULATOR.

1. $\sqrt{144} =$ 2. $\sqrt{0.49} =$ 4. $\sqrt{900} =$ 3. $\sqrt{1.21} =$ 5. $\sqrt{48} =$ 6. $\sqrt{72} =$ 8. $\sqrt{32} =$ 7. $\sqrt{45} =$ 9. $\sqrt{49 \cdot 100} =$ 10. $\sqrt{15.18} =$ 12. $\sqrt{17 \cdot 17} =$ 11. $\sqrt{6 \cdot 24} =$ 13. $\sqrt{40 \cdot 20} =$ 14. $\sqrt{2 \cdot 5 \cdot 5 \cdot 5 \cdot 5} =$ 15. $\sqrt{\frac{33}{11}} =$ 16. $\sqrt{\frac{49}{169}} =$ 17. $\sqrt{\frac{8}{64}} =$ 18. $\sqrt{\frac{7}{63}} =$ 19. $\sqrt{\frac{20}{25}} =$ **20.** $\sqrt{\frac{40}{18}} =$ **21.** $\sqrt{\frac{7}{8}} =$ **22.** $\frac{\sqrt{10}}{\sqrt{3}} =$ **23**. $\sqrt{\frac{16}{3}} =$ **24.** $\frac{4}{3\sqrt{2}} =$ **25.** $\sqrt{\frac{3}{\Delta^{\Lambda}}} =$ **26.** $\sqrt{\frac{14}{15}} \cdot \frac{\sqrt{3}}{\sqrt{7}} =$

Period

Practice: Simplify completely. All answers should be left in radical form. DO NOT USE A CALCULATOR.

27. $\sqrt{x^{16}} =$	28. $\sqrt{x^{25}} =$
29. $\sqrt{x^{36}} =$	30 . $\sqrt{\chi^{49}} =$
31 . $\sqrt{ax^6} =$	32. $\sqrt{x^3 y^5} =$
33 . $\sqrt{9x^9} =$	34. $\sqrt{2x^2y^2} =$
$35. \ \sqrt{2x} \cdot \sqrt{2} =$	36. $\sqrt{15x^3} \cdot \sqrt{5x^5} =$
37 . $5\sqrt{7} + 6\sqrt{7} =$	38 . $\sqrt{32} + 5\sqrt{2} =$
39 . $\sqrt{20} + \sqrt{45} =$	40. $\sqrt{25x^2} + \sqrt{16}$.
41. $\sqrt{\frac{a^{12}}{b^6}} =$	42. $\sqrt{\frac{2x^3}{9x}} =$
43. $\sqrt{\frac{x^{23}}{x^{17}}} =$	44. $\sqrt{\frac{2}{x^8}} =$
$45. \ \frac{\sqrt{x}}{2\sqrt{y}} =$	46. $\sqrt{\frac{24x^2}{3y}} =$
47. $\frac{2x}{\sqrt{x^3}} =$	48 . $3\sqrt{5}(3\sqrt{5}-2)$
49. $\frac{15\sqrt{3}+25\sqrt{5}}{10} =$	50. $(3\sqrt{3} - \sqrt{2})(3$

10

D.
$$\sqrt{x^{49}} =$$

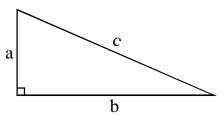
2. $\sqrt{x^3 y^5} =$
4. $\sqrt{2x^2 y^2} =$
5. $\sqrt{15x^3} \cdot \sqrt{5x^5} =$
8. $\sqrt{32} + 5\sqrt{2} =$
9. $\sqrt{25x^2} + \sqrt{16x^2} =$
2. $\sqrt{\frac{2x^3}{9x}} =$
4. $\sqrt{\frac{2}{x^8}} =$
5. $\sqrt{\frac{24x^2}{3y}} =$

=

50.
$$(3\sqrt{3} - \sqrt{2})(3\sqrt{3} + \sqrt{2}) =$$

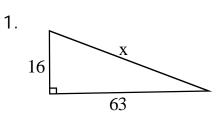
<u>11</u>.1

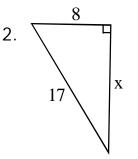
The Pythagorean Theorem

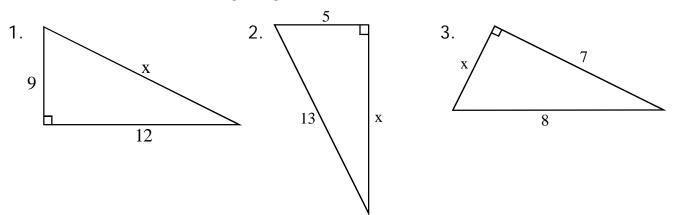


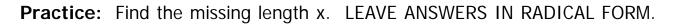
The Pythagorean Theorem:

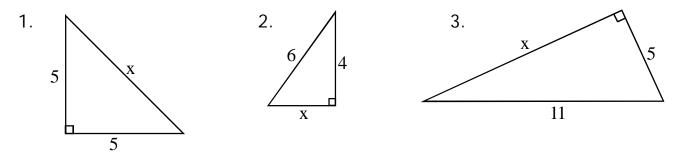
The sum of the squares of the legs of a right triangle is equal to the square of its hypotenuse. \sim


Simply:
$$a^2 + b^2 = c^2$$


Where a and b are the legs and c is the hypotenuse.


The hypotenuse is the longest side, always opposite the right angle.


Examples: Find the missing length x.



Practice: Find the missing length x.

The Pythagorean Theorem

Many word problems can be solved using the Pythagorean Theorem.

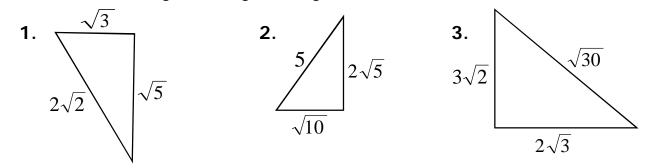
Examples: Solve each using the Pythagorean Theorem.

- **1.** A rectangle has a diagonal length of 7cm and a width of 3cm. Find its area (leave in simplified radical form).
- 2. The wire supporting a 20-foot tall phone pole is attached to the top of the pole, and to the ground 12 feet from the pole. How long is the wire?

Practice: Solve each using the Pythagorean Theorem.

- **1.** Find the hypotenuse of a right triangle whose legs are 7 and 24 inches long.
- 2. What is the length of the diagonal of a square that has 2-inch sides? (Leave in simplified radical form.)
- **3.** If you walk 1 mile north, then 3 miles east, then three miles north, how far will you be from where you started?

Pythagorean Triples: You can determine whether a triangle is a right triangle by testing the sides using the Pythagorean Theorem.

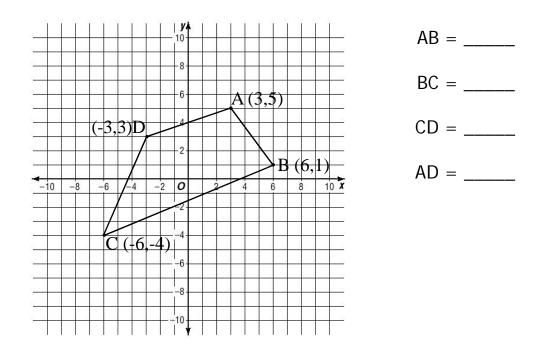

Examples: Which of the lengths below could be the sides of a right triangle?

1. 3-4-5 **2**. 5-7-9 **3**. 20-21-29

Practice: Which of the lengths below could be the sides of a right triangle?

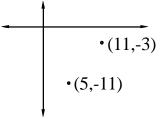
1. 6-7-8 **2.** 6-8-10 **3.** 5-12-13 **4.** 7-23-24

Practice: Which triangle is a right triangle?


Distance on the Plane

You can use the Pythagorean Theorem to find the distance between two points on the coordinate plane.

Practice:


Find the length of each segment on the coordinate plane below:

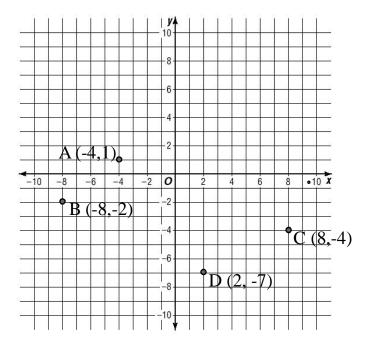
Of course, the distance between two points on the plane can be found without graphing:

Example:

Find the distance between the points (11, -3) and (5, -11) on the plane.

Given any two points: (x_1, y_1) and (x_2, y_2) : The distance between two points on the plane is the hypotenuse of a right triangle with a width of _____ and a height of _____.

The **distance formula** IS based on the pythagorean theorem:

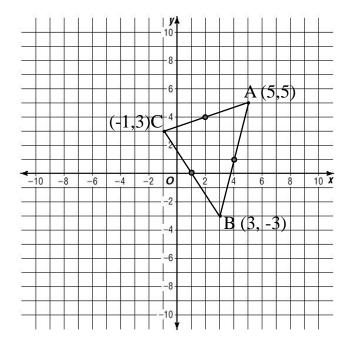

$$d^{2} = (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} \qquad d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

Distance on the Plane

Math 8 11.2

Practice:

Find the distance between each pair of points below:



A(-4,1) to B(-8, -2) = _____ A(-4, 1) to C(8, -4) = ____ A(-4, 1) to D(2, -7) = ____ C(8, -4) to D(2, -7) = ____

(leave in radical form)

Midpoint:

Try to find the midpoint of each segment below. Look for a relationship that would help you find the midpoint without graphing.

midpoint of AB = _____

midpoint of BC = _____

midpoint of AC = _____

Try to write the midpoint formula on your own. Practice: What is the midpoint fr segment MN for M(22, -15) and N(2, -3)

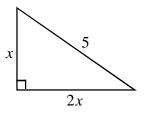
Name

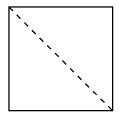
Pythagorean Problems (Easier)

Practice:

Solve each using the Pythagorean Theorem:

1. Patrick rides his bicycle 4 miles south, then 8 miles west. How far is he from where he started (in simplest radical form)?


2. An equilateral triangle has 1-ft sides. What is its height (in simplest radical form)?


3. What is the diagonal length of a square whose sides are 6cm long?

4. The rectangle below is made up of three congruent squares. The rectangle has a perimeter of 24cm. What is the length of the dashed diagonal?

5. A 25-foot ladder rests against a wall so that the bottom of the ladder is 7 feet away from the wall. How high above the ground is the top of the ladder?

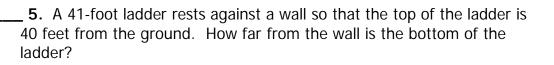
6. Solve for x:

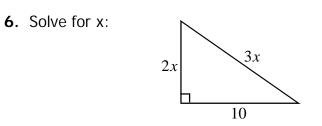
Period

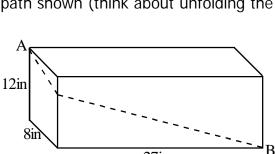
Name

Pythagorean Problems (Harder)

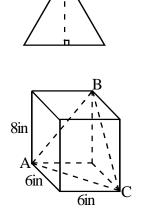
Practice:


Solve each using the Pythagorean Theorem:


1. Turner rides his bicycle 5 miles south, then 7 miles west, then 1 mile north. How far is he from where he started (to the tenth of a mile)?


2. An equilateral triangle has 4-inch sides. What is its height (in simplest radical form)?

3. Triangle ABC is inscribed (drawn within) in the prism on the right. What is the perimeter of triangle ABC (in simplest radical form)?


4. An ant is crawling along the outside of the box below. How far will he walk from A to B along the path shown (think about unfolding the box to solve this problem).

27in

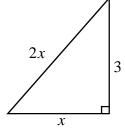
Math 8 11.2

Pythagorean Review Math 8 Solve: **1.** The hypotenuse of a right triangle is 45cm, and one of its legs is 36cm. Find its perimeter. 1. _____ 2. A fifteen-foot ladder reaches the top of a 13-foot wall. How far is the base of the ladder from the base of the wall? (leave in radical form) 2. **3.** An isosceles triangle has two congruent 11-inch sides, and an 18-inch base. What is its area (in simplest radical form)? 3. _____ 4. Huntersville is 21 miles due south of Statesville and 20 miles due west of Concord. How many miles is it from Statesville to Concord? 4. _____ 5. If you drive 3 miles west, then 5 miles south, and finally 15 miles east, how far will you end up from where you started?

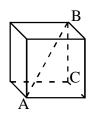
Name_

5. _____

Period


Name_

Pythagorean ReviewMath 8Answer each: Leave irrational answers in simplest radical form.

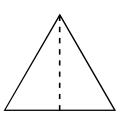

6. The area of a square is 25cm². What is the length of its diagonal?

7. The area of a square is 18cm². What is the length of its diagonal?

8. Solve for x:

9. A cube has two-inch edges. What is the distance between opposite corners A and B of the cube? (leave in radical form)

9. _____ Hint: find AC, then AB is the hypotenuse of triangle ABC.

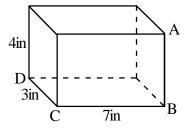

Period

6.

7. _____

8.

10. An equilateral triangle has 8-inch sides. What is the area of the triangle? (leave in radical form)

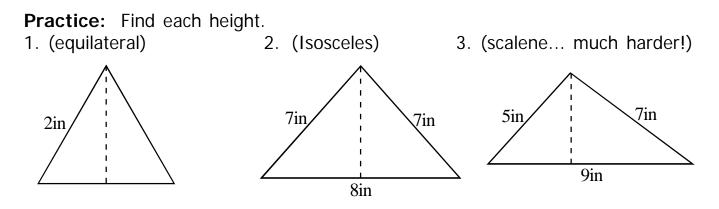


10. _____

Pythagorean Review

Math 8 11.2

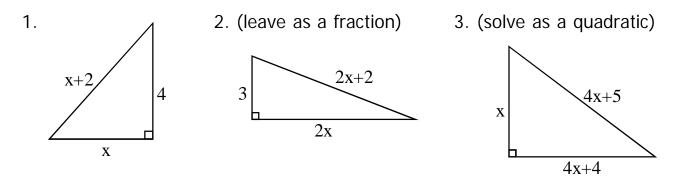
Right Triangles are EVERYWHERE! <u>Prisms:</u>



Name the right triangles you can find in this figure (using only A, B, C and D):

Now find the distance from: A to C, B to D, and A to D.

Non-Right Triangles:


You can use the Pythagorean Theorem to find the altitude (height) of triangles.

More work with variables:

The Pythagorean Theorem works even without numbers.

Practice: Solve for x in each.


Name_

Period_

Math 8

Pythagorean Practice Quiz

Find the missing length x for each diagram below. Leave all irrational answers in radical form.

	Name	Period
Pythagorean Practice Quiz		Math 8
Solve each. Leave answers in simplest radical form of7. What is the area of an equilateral triangle with 6-in answer in simplest radical form).		2.
	7.	
8. Kyle walks 40 meters north, then 18 meters east, south, then directly back to where he started. walk altogether? (Round to the tenth of a north)	How far did he	
	о.	
9. The wires that support a 90-foot antenna are 92 f from the base of the tower are the wires attac (in simplest radical form)	0	
	9.	
10. Find the distance between the following pair of points (to the nearest tenth): (9, -2)	(-1, 5)	
	10.	
	10.	
11. What is the diagonal length of two adjoining squas square is 3cm (in simplest radical form)?	ares if the side length o	of each
Simplify each:	11.	
$\sqrt{2\pi^2}$		
12. $\sqrt{25x^2} =$	12.	
13. $\sqrt{20} + \sqrt{45} =$		
	13.	
14. $\sqrt{900 a^6} =$		
	14.	
15. $\sqrt{\frac{18}{49}} =$		

15. _____

The Pythagorean Theorem

A **Pythagorean Triple** is a set of three integers which satisfy the Pythagorean Theorem. For example, the commonly known 3-4-5.

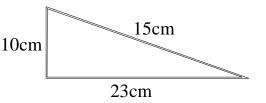
$$3^2 + 4^2 = 5^2$$

More Examples:

Find the missing number in each Pythagorean triple below.

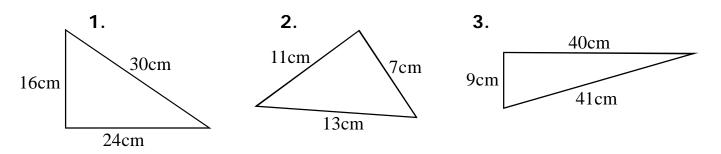
1. 5-__-13 **2**. __-15-17 **3**. 9-40-___

Practice:


Which of the following is a Pythagorean Triple?

1.	8-15-17	2.	25-27-37	3.	33-56-65
4.	16-63-65	5.	21-28-37	6.	39-80-89

If the sides of a right triangle form a Pythagorean Triple, then the tiangle is a right triangle. For example, if you were asked to find the area of a triangle whose side lengths were 6, 8, and 10cm ... you would know that the triangle was a right triangle $(6^2 + 8^2 = 10^2)$.


Example:

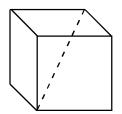
Is the triangle shown a right triangle?

Practice:

Which triangle below is a right triangle?

Name_

Period ____

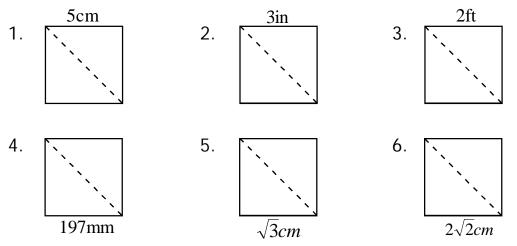

Pythagorean Triples

Find the missing length in each Pythagorean Triple below. (side lengths are listed in order, least to greatest)

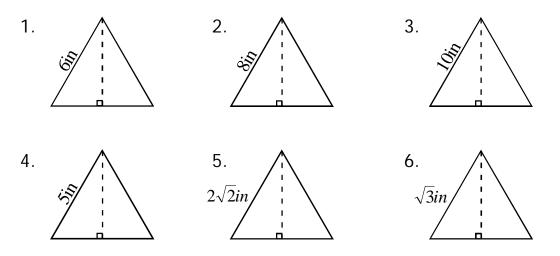
1 . 3 - 4	1
2 . 6 10	2
3 . 5 13	3
4 . 9 - 40	4
5 21 - 29	5
6 . 14 - 48	6
7 . 36 - 77	7
8. 12 37	8
9 60 - 61	9
10. 8 - 15	10
11 42 - 58	11
12. 33 - 56	12
13. 45 - 53	13

	NamePe	riod
	eview Math 8	
14.	Simplify $\sqrt{180}$	14
15.	Find the distance between (5, -2) and (-7, 3).	15
16.	If Harrison walks 20meters north across a field, then 20 meters west, then 20 meters north again, how far will he have to walk to go directly back to his starting point? Round to the tenth of a meter.	16
17.	What is the diagonal length of a rectangle whose side lengths are 12m and 35m long?	17
18.	What is the height of an equilateral triangle whose side lengths are 4cm long?	18
19.	What is the diagonal length of a square whose side lengths are 7cm long?	19

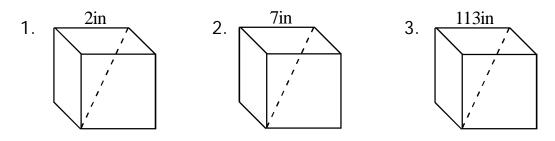
20. The space diagonal of a cube is the diagonal which connects two vertices that are not on the same face as shown below. What is the length of the space diagonal of a cube whose edges are 3cm long?


20. _____

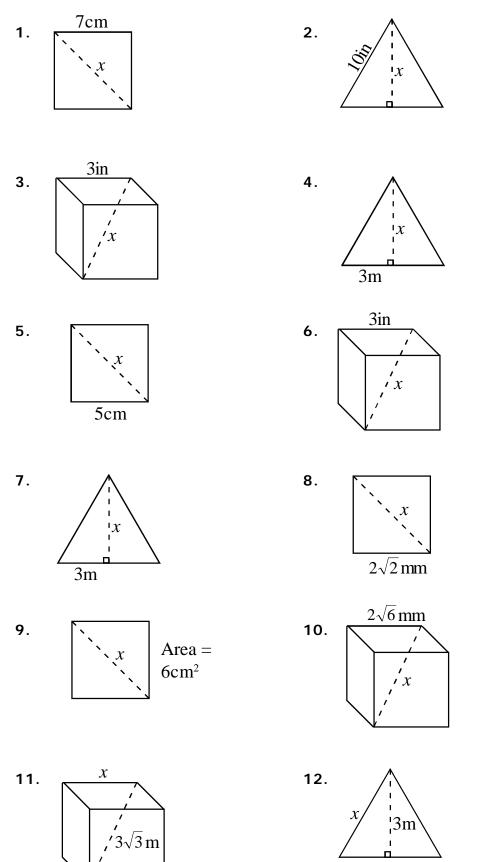
The Pythagorean Theorem


Math 8

Three easy things to memorize:


First: The diagonal length of a square. Find each diagonal length below.

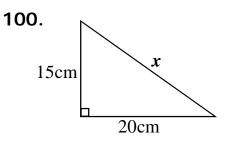
Second: The altitude (height) of an equilateral triangle. Find each altitude below.

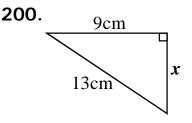


Third: The space diagonal of a cube. Find the length of each space diagonal below.

Diagonals and Altitudes

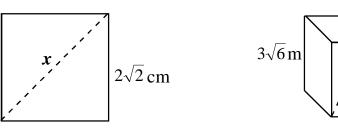
Find each missing length x in the diagrams below.




Period_

		Name	P	eriod
Re	eview		Vlath 8	
Solv	ve each:			
14.	Fill-in the blanks with whole numbers: The squ greater than	are root of 130 is less th	an but	14
15.	Find the distance between (-2, -5) and (5, -12)	in simplest radical form		15
16.	Pueblo is nine miles north of Santa Clara, and L Clara. What is the distance from Pueblo to		of Santa	
				16
17.	What is the third value in the Pythagorean Trip	le that includes 15 and 1	7?	17
18.	The smaller squares have a side length of 7cn dashed square in the diagram below?	Mat is the area of the sea of	ie larger	18
19.	An isosceles triangle has congruent sides that 4cm long. What is its area?	are 6cm long, and a base	e that is	19
20.	A ladder is 50 feet long and reaches a height o reach if you pull the base of the ladder 16 fe	•		20

Test Review


Find each missing length:

300. (square)

400.

Solve each. Leave your answers in simplest radical form:

- **100.** Fill-in the blank for the following Pythagorean triple: 36 ____ 85
- **200.** What is the area of a rectangle that has a width of 8cm and a diagonal length of 10cm?
- **300.** Find the distance between (-2, 3) and (5, -4).
- 400. What is the area of an equilateral triangle that has 14-inch sides?

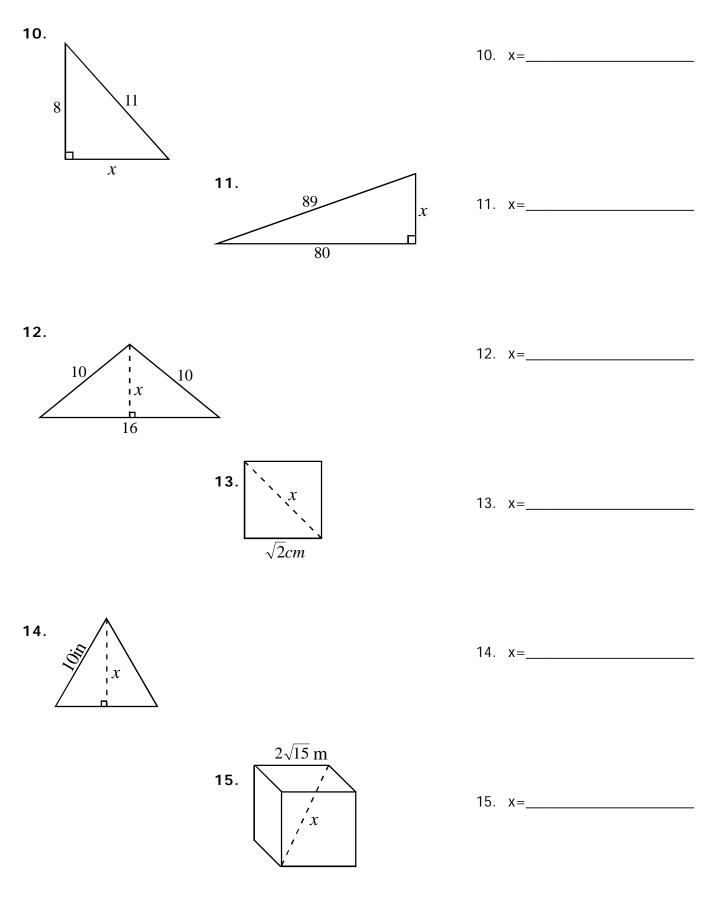
Simplify Each:

100. $\sqrt{24} =$ **200**. $\sqrt{72} =$

300.
$$\sqrt{50} - \sqrt{32} =$$
 400. $\sqrt{\frac{12x^2}{5}} =$

			Name		Period
Pythagorea Simplify each:	an Practic	e Test			Math 8
1 . $\sqrt{4,900} =$					1
2. $\sqrt{12x^2}$					2
3 . $\sqrt{18} + \sqrt{8} =$					3
4. $\sqrt{\frac{3}{25}} =$					4
Solve each. Leave a	nswers in radical fo	rm unless n	noted otherw		Τ
 What is the altitude 10-inch sides a 	e (height) of an iso: nd a 4-inch base (ir		-	?	5
	visit his friend, and How far does Trey	d then 1 mil	e south to t	neater?	
7. A 25-foot ladder is top of the ladd	•	n a wall. Ho	w high will t		6
8. What is the distance	ce between the follo	owina points	s? (14) (7
		y your			8
9. <i>How many</i> of the 33-44-55	• •	•	oles? 1-59-60	9-13-16	

9. _____


Name__

Period_

Math 8

Pythagorean Practice Test (4th)

Find the missing length x for each diagram below. Leave all irrational answers in radical form.

