Triangle Basics

First: Some basics you should already know.

1. What is the sum of the measures of the angles in a triangle? Write the proof (Hint: it involves creating a parallel line.)

2. In an isosceles triangle, the base angles will always be _________.
 The proof of this generally involves some information we will review today, but here it is two ways:

 Triangle ABC is congruent to Triangle CBA (side-angle-side) therefore angle A = angle C.

 Not satisfied? Add some lines:

 AD = CE

 Triangle ABE = Triangle CBD (SAS)

 Therefore triangle CAD = ACE (subtraction)

 Which makes angle BAC = BCA

3. If exactly two angles in a triangle are equal then it must be __________.
 (this is the converse of #2)

4. What is the relationship between an exterior angle of a triangle and the sum of the remote interior angles? Prove with just a sentence or two.

5. In triangle XYZ: XY=6 inches, YZ=9 inches, and XZ=11 inches.
 Which is the largest angle: X, Y, or Z? The smallest?

6. Which of the following sets of numbers could NOT represent the three sides of a triangle?

 3-4-5 5-12-13 8-15-20 16-17-40 10-10-17

7. How many scalene triangles have sides of integral (integer) length and perimeter less than 15?
Triangle Congruencies

You have probably already heard of most of the triangle congruence shortcuts. Today we will construct several triangles to demonstrate the shortcuts we can use to show two triangles are congruent.

Figures are considered congruent if they are exactly the same. If you can slide, rotate, or reflect one figure so that it is exactly the same as another, the two figures are considered congruent.

1. **SSS**: Side-Side-Side
 Use the three sides above to construct a triangle (begin with FH). Compare it to the ones your classmates drew. Does SSS demonstrate congruence?

2. **SAS**: Side-Angle-Side
 Use FG, angle G and GH to construct a triangle. Compare it to the triangle your classmates drew. Does SAS demonstrate congruence?

3. **ASA**: Angle-Side-Angle
 Use angle G, segment GH, and angle H to construct a triangle. Compare it to the triangle your classmates drew. (Is AAS a congruence shortcut? Why or why not?)

3+. **AAS**: Side-Angle-Angle

4. **SSA**: Side-Side-Angle
 Use angle G, segment GH, and segment FH to construct a triangle. Compare it to the triangle your classmates drew. Does SSA demonstrate congruence? Is it possible to draw more than one triangle using angle G, segment GH, and segment FH?
Triangle Congruencies

HL and LL congruence:
Use the following segments again.

1. **LL:** Leg-Leg (For right triangles.)
 Construct Right angle FGH. Connect FH. Compare your triangle to the ones your classmates drew. Which congruence shortcut is this identical to?

2. **HL:** Hypotenuse-Leg (For right triangles.)
 Construct right angle H on segment GH. Use length FG to complete right triangle FGH. Compare your triangle to the ones your classmates drew. Is this similar to any of the congruence shortcuts on the opposite side of this page?
Using Congruence Shortcuts

Determine which of the following pairs of triangles are congruent and why: Triangles are not necessarily to scale.

\[\triangle ABC \cong \triangle \underline{___} \text{ by } \underline{___}. \]

\[\triangle BAC \cong \triangle \underline{DEC}? \]

\[\triangle BCD \cong \triangle \underline{BAC}? \]

\[\triangle \underline{BAC} \cong \triangle \underline{CDB}? \]

\[\triangle ABC \cong \triangle \underline{CDE}? \]

\[\angle \underline{CDB} \cong \angle \underline{CBD} \]

\[\triangle \underline{ACB} \cong \triangle \underline{ECD}? \]
Using Congruence Shortcuts

Determine which of the following pairs of triangles are congruent and why: Triangles are not necessarily to scale.

\(\triangle ABC \cong \triangle \text{___} \) by ___.

\(\triangle ABC \cong \triangle ADC? \)

\(\triangle CBA \cong \triangle CED? \)

\(\triangle ADC \cong \triangle CBA? \)

\(\angle A \cong \angle C? \)

G is the centroid.
\(AD=CF \)
\(\triangle AGF \cong \triangle CGD? \)
\(\triangle ADE \cong \triangle CFE? \)
Mathematical Proof takes an accepted set of facts and properties to demonstrate something to be true.

In a two-column proof, statements are made on the left and justifications are made on the right.

Ex.

![Diagram of geometric proof]

Given:
- \(AE \parallel DB \) and \(\angle ECB \cong \angle ACD \)

Prove:
- \(\triangle ACD \cong \triangle ECB \)

1. \(AC \cong EC \)
2. \(\angle ECB \cong \angle ACD \)
3. \(AE \parallel DB \)
4. \(\angle ACD \cong \angle CDB \)
5. \(\angle ECB \cong \angle CBD \)
6. \(\angle CDB \cong \angle CBD \)
7. \(\angle CDB \) is isosceles.
8. \(CD \cong CB \)
9. \(\triangle ACD \cong \triangle ECB \)

Some common justifications you will be using in your proofs:
- **Alternate Interior Angles (AIA)**
- **Corresponding Angles (CA)**
- **Definition of _______.** (midpoint, square, kite, vertical angles, bisector, etc.)
- **SSS, ASA, SAS, SAA, HL, LL**
- **Same Segment** or **Same Angle** (ex. If you said \(BD \cong DB \). This will later be called the Reflexive Property of Congruence, but that is not necessary now.)
- **Vertical Angles**
- **Linear Pair**
- **etc.**

On the back, record any new justifications that we learn so that you can have a list to use when writing proofs.
CPCTC

If you can show that two triangles are congruent, then their corresponding parts are also congruent.

CPCTC: Corresponding Parts of Congruent Triangles are Congruent

We will use this shortcut when writing Two-Column Proofs.

![Diagram of triangles]

In a two column proof, statements are made in the left column, and justifications for those statements are on the right.

1. Begin with the given information.
2. Work through the diagram to determine whether the conclusion can be reached.
3. Organize the steps carefully as in the example below, including the given information.

EX.

Given: C is the midpoint of segment AE.
AB and CD are parallel.
Angle B and Angle D are congruent.

Prove: BC=DE.

1. C is the midpoint of AE.
2. AC=CE
3. AB and CD are parallel.
4. \(\angle ECD = \angle CAB \)
5. \(\angle B = \angle D \)
6. \(\triangle ABC \cong \triangle CDE \)
7. BC = DE

1. Given
2. Definition of midpoint
3. Given
4. Corresponding angles
5. Given
6. SAA congruence (# 2, 4, 5)
7. CPCTC
CPCTC

Write a two-column proof for each:

Given:
\(AB \parallel DC \)
\(\angle DBC \cong \angle BDA \)
Prove: \(\angle A = \angle C \)

Given:
\(AB = AD \)
\(AC \) bisects \(\angle BAD \)
Prove: \(\angle ACB = 90^\circ \)

For each problem below, some of the given information is included in the diagram.

Given:
\(AB = ED \)
\(CE \) bisects \(\angle BCD \)
Prove: \(BC = EC \)

Given:
\(AD \parallel BC \)
Prove: \(AB = CD \)

Given:
\(C \) is the midpoint of BF
\(F \) is the midpoint of CE
\(AB \parallel DE \)
\(\angle A = \angle D \)
Prove: \(AF = CD \)
Flowchart Proofs

Flowcharts can be used to explain the logical organization of a proof.

In a flowchart proof, statements are placed within boxes, with the justification below the box.

Arrows connect statements. The arrow can be read as the word “therefore.”

Given:
- \(\angle ABC \cong \angle EDC \)
- \(\angle CAE \cong \angle CEA \)

Prove: \(\triangle BCA \cong \triangle DCE \)

Steps:
1. \(\angle CAE \cong \angle CEA \) (Given)
2. \(AC \cong EC \) (Congruent sides of an isosceles \(\triangle \))
3. \(\angle BCA \cong \angle DCE \) (Vertical angles)
4. \(\triangle BCA \cong \triangle DCE \) (AAS)
5. \(\angle ABC \cong \angle EDC \) (Given)

Given:
- \(\triangle BCA \cong \triangle DCE \)

Prove: \(\triangle ADE \cong \triangle EBA \)

This can be done many ways, try to find the easiest.
Complete the following Proofs by filling in the missing blanks:

Proof 1: DT \parallel AR

1. \(\text{DT} \parallel \text{AR}\)
2.
3.
4. \(\overline{TA} \cong \overline{AT}\)
5.
6.

Given:
- \(\text{DT} \parallel \text{AR}\)
- \(\angle D \cong \angle R\)

Prove: \(\overline{DA} \cong \overline{TR}\)

Proof 2: \(\triangleGES \cong \triangleSTG\)

1. \(\triangleGES \cong \triangleSTG\)
2. \(\triangleASE \cong \triangleAGT\)

Given:
- \(\angle ESA \cong \angle TGA\)

Prove: \(\overline{SA} \cong \overline{GA}\)
Complete the following Proof by filling in the missing blanks:

Given:
$\triangle MET \cong \triangle REA$

Prove: $\triangle MEA \cong \triangle RET$

<table>
<thead>
<tr>
<th>$\triangle MET \cong \triangle REA$</th>
<th>$\angle TME \cong \angle ARE$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPCTC</td>
<td></td>
</tr>
<tr>
<td>$\overline{MR} \cong \overline{RM}$</td>
<td></td>
</tr>
<tr>
<td>$\angle TME \cong \angle ARE$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>$\triangle MEA \cong \triangle RET$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>$\overline{RT} \cong \overline{MA}$</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

Proof:

1. $\triangle MET \cong \triangle REA$ (Given)
2. $\angle TME \cong \angle ARE$ (CPCTC)
3. $\overline{MR} \cong \overline{RM}$
4. $\angle TME \cong \angle ARE$ (SAS)
5. $\triangle MEA \cong \triangle RET$ (CPCTC)
6. $\overline{RT} \cong \overline{MA}$ (CPCTC)
Special Proofs

One shortcut:
For several the following proofs, we will shorten some steps by using the following theorem:
If two angles are both linear and congruent, then they are right angles.
In our proofs, the justification will look like:
1. $\angle XYZ = 90^\circ$ 1. Congruent Linear Angle (with $\angle WYZ$).

Proofs involving special triangles.
Use a two-column or flowchart proof for each:

1. Prove that the bisector of the vertex angle in an isosceles triangle is also the median.

2. Prove that the altitude from the vertex of an isosceles triangles is also an angle bisector.

3. In a given circle, prove that if a radius bisects a chord then the chord and radius are perpendicular.

4. Explain (too long for a formal proof) why the incenter, circumcenter, orthocenter, and centroid are all the same point in an equilateral triangle.

Proofs involving quadrilaterals.
Use a two-column or flowchart proof for each:

1. Prove that the diagonals in a square are angle bisectors.

2. Prove that the diagonals in a parallelogram are of equal length.

3. Explain how you could prove that the diagonals in a parallelogram bisect each other.

4. Prove that the diagonals in a rhombus are perpendicular (to each other).

Confused about one of these?
CPCTC and Proofs

Prove each of the following using CPCTC.
Write a two-column proof for:

Given: ΔBCD ≅ ΔEFA

Prove: CG ≅ GF

Complete a flowchart proof for the following:

Given: ΔDCF ≅ ΔECF

Prove: AE ≅ BD
Congruence Review

Determine which of the following pairs of triangles are congruent and why: Triangles are not necessarily to scale. Write ‘cannot be determined’ where appropriate.

\[\triangle ABC \cong \triangle \quad \text{by } \quad \]

\[\triangle CBA \cong \triangle \quad \text{by } \quad \]

\[\triangle MTE \cong \triangle \quad \text{by } \quad \]

\[\triangle RAT \cong \triangle \quad \text{by } \quad \]

\[\triangle PAT \cong \triangle \quad \text{by } \quad \]

\[\triangle PIG \cong \triangle \quad \text{by } \quad \]
CPCTC and Proofs

Complete a proof for each: Use a separate sheet if needed.

Given:
\(\angle CDB \cong \angle CEA \)
\(\overline{CA} \cong \overline{CB} \)
\(\overline{AD} \cong \overline{BE} \)

Prove: \(\overline{AE} \cong \overline{BD} \)

Giveen:
\(\triangle GRE \cong \triangle SRT \)

Prove: \(\triangle SEN \cong \triangle GTN \)

Challenge:
Triangles BCE and ACD are equilateral.
Prove that \(\overline{AE} = \overline{BD} \).
Determine which of the following pairs of triangles are congruent and why: Triangles are not necessarily to scale. Write ‘cannot be determined’ where appropriate.

\[\triangle MTE \cong \triangle \underline{____} \text{ by } \underline{_____} \]

\[\triangle PAT \cong \triangle \underline{____} \text{ by } \underline{_____} \]

\[\triangle DOG \cong \triangle \underline{____} \text{ by } \underline{_____} \]

\[\triangle PIG \cong \triangle \underline{____} \text{ by } \underline{_____} \]

\[\triangle ABC \cong \triangle \underline{____} \text{ by } \underline{_____}? \]

\[\triangle BAC \cong \triangle \underline{____} \text{ by } \underline{_____}? \]

\[\triangle CUG \cong \triangle \underline{____} \text{ by } \underline{_____} \]
Proofs Practice

For each of the following: Sketch the situation and label all given information. Create a two-column proof for the given statement.

1. Prove that in a given circle C, if chords AB and DE are congruent, then angles ACB and DCE are also congruent.

 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________

2. Segments AB and CD bisect each other. Prove that segments AD and BC are parallel.

 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________

Hints For Back:
1. You will need to use the base angles of an isosceles triangle.
2. You will use vertical angles.
3. You will prove two triangles that look congruent are congruent.
4. You will use Congruent Linear Angles.
Challenge: In the figure below, \(\overline{AB} \cong \overline{BD} \) and \(\overline{EC} \) bisects angle \(\overline{BED} \).

Prove \(\overline{AD} \perp \overline{EC} \)

Hints can be found on the front.
Test Review:

Fill-in the blanks for each triangle congruence below. Write ‘cannot be determined’ where appropriate.

\[\triangle AEF \cong \triangle \underline{\text{___}} \text{ by } \underline{\text{___}}?\]

\[\triangle HCA \cong \triangle \underline{\text{___}} \text{ by } \underline{\text{___}}?\]
\[\triangle AED \cong \triangle \underline{\text{___}} \text{ by } \underline{\text{___}}?\]
\[\triangle HCD \cong \triangle \underline{\text{___}} \text{ by } \underline{\text{___}}?\]
\[\triangle AHD \cong \triangle \underline{\text{___}} \text{ by } \underline{\text{___}}?\]
\[\triangle ABC \cong \triangle \underline{\text{___}} \text{ by } \underline{\text{___}}?\]

List the sides below in order from shortest to longest. (not to scale)
Problems Practice Test
Fill-in the blanks for each: Write “Cannot be determined” where appropriate.

\[\triangle BOY \cong \triangle \quad \text{by} \quad \]

\[\triangle PAT \cong \triangle \quad \text{by} \quad \]

\[\triangle PIN \cong \triangle \quad \text{by} \quad \]

\[\triangle PIG \cong \triangle \quad \text{by} \quad \]

\[\triangle CAT \cong \triangle \quad \text{by} \quad \]

\[\triangle MTE \cong \triangle \quad \text{by} \quad \]

\[\triangle ABE \cong \triangle \quad \text{by} \quad \]

\[\triangle BAD \cong \triangle \quad \text{by} \quad \]
Prove: \(\overline{CH} \cong \overline{CA} \)

Write a two-column proof to prove that if congruent segments \(AB \) and \(CD \) are parallel, then \(AC = BD \). Include a small sketch and all givens. Use as few spaces as possible.

note: \(AC < AD \)
Don’t Guess!
The diagrams below are misleading and force you to ONLY USE WHAT YOU KNOW. Just because two triangles look congruent does not mean that they can be proven congruent using ASA, SSS, SAS, AAS, etc.

Practice:
Which pair(s) of triangles is congruent?

Practice:
Which pair(s) of triangles is congruent?

Practice:
Prove: \(C \) is the midpoint of \(BE \).

Prove: \(\angle GH \cong \angle GFH \)
Test Review

Practice: Misleading diagrams.
Which pairs of triangles are congruent AND why?

1. __________

2. __________

3. __________

4. __________

5. __________

6. __________

Practice: Misleading Diagrams.
Which pairs of triangles are congruent AND why?

7. __________

8. __________

9. __________

Practice:
On back, write a 2-column proof to show that the diagonals of a kite are perpendicular to each other.