Area of a triangle:

The area of a triangle can be found with the following formula:

$$
A=\frac{1}{2} b h \quad \text { or } \quad A=\frac{b h}{2}
$$

You can see why this works with the following diagrams:

Solve: Find the area of each triangle.

3.

Area of a trapezoid:
The area of a triangle can be found with the following formula:

$$
A=\frac{1}{2} h\left(b_{1}+b_{2}\right) \quad \text { or } \quad A=\frac{h\left(b_{1}+b_{2}\right)}{2}
$$

Solve: Find the area of each trapezoid.
1.
1.
2.

3.

Area of a circle:

The area of a circle can be found with the following formula: $A=\pi r^{2}$
Circumference of a circle looks similar: $C=2 \pi r$ or $C=\pi d$

Area and circumference of a circle:

Find the area and circumference of each:
1.

2.

3.

Combinations:

Find the area and perimeter of each:
1.

2.

3.

Review:

Find the area and perimeter/circumference of each:

2.

3.

\qquad

Find the area of each: For \#7-12 find the circumference/ perimeter. ROUND TO THE TENTH WHERE APPLI CABLE.

2.

1.
4.

4.

8.

9.

7. A: \qquad C: \qquad
8. A: \qquad C:
--_
9. A: \qquad C:

12.

10. A: \qquad P: _-_-_
11. A: \qquad P: -___-_
12. A: \qquad P: \qquad
\qquad

What formula could be used to determine the area (A) of a regular polygon given the:
Number of sides: n
Side length: s
Apothem (inradius): a

$$
A=\frac{1}{2} a s n
$$

This is easiest to think about as finding the area of \mathbf{n} triangles with base \mathbf{s} and height \mathbf{a}.

The area of the pentagon to the right is:

$$
A=\frac{1}{2} \cdot 10 \cdot 14 \cdot 5=350 \mathrm{~cm}^{2}
$$

How can this formula be simplified given the perimeter P of the polygon?

Find the area of each regular polygon below: Round to the tenth.

1. A nonagon (9 sides) whose side length is 12 cm and whose apothem is 16.5 cm ?
2. A hexagon whose sides measure 6 inches and whose apothem is 5.2 inches.
3. An octagon whose sides measure 61 inches and whose apothem is 74 inches.
4. A heptagon whose apothem measure 10.25 inches and whose sides are 10 inches long.
5. A polygon whose perimeter is 60 inches and whose apothem is 8.5 in ?
\qquad
\qquad
か＊口米』

Determine the area of each figure below：

6.

6．＿＿－＿－＿
7.

7.

What is the perimeter of each figure below？
（round to the tenth）
8．\quad Area $=585 \mathrm{~cm}^{2}$
9． Area $=364 \mathrm{in}^{2}$

8. \qquad 9. \qquad
What is the apothem of each regular polygon below？
（round to the tenth）

10．\quad Area $=121 \mathrm{~cm}^{2}$

11． Area $=1075 \mathrm{ft}^{2}$

10. \qquad 11.
\qquad
か䊅口米』

Determine the area of each regular polygon below：

1.

1.
－＿－＿－＿－＿
2.

\qquad
3.

4.

3．＿－＿－－－
4.

Given the area，what is the side length of each figure below？ （round to the tenth）
5．\quad Area $=120.7 \mathrm{in}^{2}$
6． Area $=58 \mathrm{in}^{2}$

5.
6.
\qquad

な*
Determine the area of each shaded area below: (to the tenth)
(all polygons shown are regular)

8.

7. \qquad
8. \qquad
9. Find the area of the shaded region below: Round to the tenth.

9. \qquad
10. Challenge: Find the area of the shaded region below:

Round to the tenth.

10. \qquad
\qquad

Surface Area is the sum of the areas of all faces which enclose a solid.
You should alreay be able to find the surface area of basic solids like those below:

Be methodical!

Two ends: $4 \times 5 \times 2=40 \mathrm{ft}^{2}$
Front and back: $10 \times 5 \times 2=100 \mathrm{ft}^{2}$
Top and bottom: $10 \times 4 \times 2=80 \mathrm{ft}^{2}$
Surface area $=40+100+80=220 \mathrm{ft}^{2}$

Top and bottom $=2\left(3.14 \times 9^{2}\right)=508.68 \mathrm{in}^{2}$ (remember the formula for area of a circle is πr^{2}

Rectangular 'wrap' $=2 \times 3.14 \times 9 \times 20=1130.4 \mathrm{in}^{2}$ (remember the formula for area of a the 'wrap' is $(2 \pi r) h$

Total surface area: $1639.08 \mathrm{in}^{2}$.

Prisms have identical bases connected by parallelograms (generally rectangles).
To find the surface area of a prism, simply add the area of the bases to the area of the lateral faces (sides).

Example:

Be methodical!

The pentagons are regular:
Each pentagon:
$A=1 / 2 \times 7 \times 10 \times 5=175 \mathrm{~cm}^{2}$
times $2=350 \mathrm{~cm}^{2}$
Five lateral faces:
$A=8 \times 10=80 \mathrm{~cm}^{2}$
times $5=400 \mathrm{~cm}^{2}$
Total surface area $=$ $350+400=750 \mathrm{~cm}^{2}$

Review practice:

1. What is the surface area of a 3-inch tall cylinder with a 7-inch radius?
2. What is the surface area of a 9-foot tall prism whose bases are regular hexagons. Each hexagon has 12 -foot sides and a 10-foot apothem.
\qquad

Determine the surface area of each solid below:
Round all answers to the hundredth.
Work on a separate sheet.

3. $\mathbf{A}=$ \qquad

4. $A=$ \qquad

6. $A=$

8. $A=$

7. $A=$ \qquad

Circle radius: 12 ft
Pentagon sides: 3 ft
Pentagon apothem: 2 ft

9. $\mathbf{A}=$
__-_-_-

ヶ湅（米
Find the surface area of each：

There are 9 surfaces．

There are 7 surfaces．

There are 7 surfaces．
\qquad

The formula used to find the volume of a prism or cylinder:

$$
V=B h
$$

Where \mathbf{B} is the area of the base and \mathbf{h} is the height.
This applies whether the figure is right or oblique (Oblique means slanted. Height is measured along the altitude).

Practice:

Find the volume of each solid. Round to the tenth.

1. \qquad
2.

3. \qquad
5.

5. \qquad
4.

4. \qquad

The formula used to find the volume of a pyramid or cone:

$$
V=\frac{1}{3} B h
$$

Where B is the area of the base and h is the height.
This applies whether the figure is right or oblique (height is measured along the altitude).

Practice:

Find the volume of each solid.

7. \qquad

9. \qquad
8. (triangle-based pyramid)

8. \qquad
10.

10. \qquad

Determine the volume of each solid below:
Round all answers to the hundredth.

Work on a separate sheet.

$1 . V=$ \qquad

4. $V=$

6. $V=$

2. $V=$ \qquad

3. $V=$

5. $V=$ \qquad

7. $V=$ \qquad

Determine the area of each：Round to the tenth．
1.

2.

3.

Determine the area of each：Round to the tenth．

2.

Determine the surface area of each：Round to the tenth．
1.

2.

cylinder diameter $=12 \mathrm{ft}$

Determine the volume of each：Round to the tenth．

Determine the surface area and volume for each：

1． $\mathbf{A}=$

2．$A=$
＿－＿－＿－
3．$A=$

V＝＿＿＿＿＿＿
$\mathrm{V}=$

Small Circle Radius：4in Large Circle Radius：8in

4． $\mathbf{A}=$
$\mathrm{V}=$ \qquad

6． $\mathbf{A}=$

$\mathrm{V}=$ \qquad
（cylinder with a cone－shaped hole）
5． $\mathbf{A}=$ \qquad
$\mathrm{V}=$

7．$\quad \mathrm{V}=$ \qquad
\qquad

Determine the surface area and volume for each：

1． $\mathrm{A}=$
＿－＿－＿－＿
$\mathrm{V}=$ \qquad
2． $\mathrm{A}=$
＿－＿－＿－
$\mathrm{V}=$
＿＿－＿－＿

3． $\mathrm{A}=$
V＝ \qquad

Name \qquad Period \qquad

Determine the surface area and volume for each：

1． $\mathrm{A}=$ \qquad
$\mathrm{V}=$ \qquad

3． $\mathrm{A}=$＿

$$
\mathbf{V}=
$$

Changing the dimensions of an object effects the area and volume. Here are some easy examples:

Ex: A square is enlarged so that the length of each side is doubled. If the area of the original square was 7 square inches, what will be the area of the enlarged square?

$2 \times 2=4$ times bigger.

Ex: A cube has one-inch edges. How many times larger is the volume of a cube with edges that are three times longer?

$3 \times 3 \times 3=27$ times bigger.

If you increase the dimensions of an object, the volume increases by the product of those increases.

Example:

The volume of a rectangular prism is $10 \mathrm{in}^{3}$. You double the length, width, and height. What will the new volume be?

Practice:

1. The area of a reactangle is $15 \mathrm{~cm}^{2}$. If you triple the length and double the width, what will the area of the new rectangle be?
2. A cube has a volume of $2 \mathrm{~cm}^{3}$. Will a cube that has 8 times more volume be twice as tall, three times as tall, 4 times as tall, or 8 times as tall?
3. What happens to the area of a circle when you triple its radius?

Practice:

Solve each.

1. A rectangular prism is $3 \times 4 \times 5$ inches. How many times greater is the volume of a $6 \times 8 \times 15$ rectangular prism? (If you are not sure, find each volume and divide).
2. When the sides of a triangle are 6 inches long, the area of the triangle is about 15.6 square inches. What would be the area of an equilateral triangle whose sides are 2 inches long? (round to the tenth)
3. A large circle has 81 times the area of a small circle. If the radius of the large circle is 45 inches, what is the radius of the small circle?

Practice:

Solve each.

1. The radius and height of a cone are tripled. What effect does this have on the cone's volume?
2. The radius of a cylinder is doubled, but the height is not changed. If the original cylinder had a volume of $4 \mathrm{~cm}^{3}$, what is the volume of the new cylinder?
3. A cylinder and a cone have the same base and equal volumes. If the cylinder is 15 inches tall, how tall is the cone?

Practice:

Solve each.

1. The length and width of a rectangular pyramid are tripled, and the height is doubled. How many times larger is the new pyramid than the original?
2. The dimensions of a cube are increased by 50% (1.5 times). If the original cube had a volume of $16 \mathrm{in}^{3}$, what is the volume of the new cube?
3. You have a square sheet of construction paper. You want a sheet that has twice the area. How many times wider will the new sheet be?

な湅口柬 4

Complete the following area problems：
1.

2.

3.

4.

5.

6.

Leave answers below in terms of Pi．

7.

8.

9.

Complete the following area problems：
10．What happens to the area of a square when you：
a．Double the sides．
b．Triple the sides．
c．Halve the sides．

11．What happens to the volume of a cylinder when you：
a．Double the radius only．
b．Triple the height only．
c．Double the radius and triple the height．

12．A rectangle has an area of $12 \mathrm{~cm}^{2}$ ．What will the area be if you：
a．Triple all sides．
b．Multiply all sides by 1.5 ．
\qquad
\qquad

Practice:

Solve each.
13. A rectangular prism is $2 \times 4 \times 7$ inches. How many times greater is the volume of a $6 \times 8 \times 7$ rectangular prism? (If you are not sure, find each volume and divide).
14. When the sides of a pentagon are 6 inches long, the area of the pentagon is about 63 square inches. What would the area of a pentagon whose sides are 2 inches long?
15. A large circle has 36 times the area of a small circle. If the radius of the large circle is 24 inches, what is the radius of the small circle?
16. The radius and height of a cylinder are tripled. What effect does this have on the volume?
17. The radius of a cylinder is doubled, and the height is multiplied by 5 . If the original cylinder had a volume of $10 \mathrm{~cm}^{3}$, what is the volume of the new cylinder?
18. A right triangle has an area of $6 \mathrm{in}^{2}$. If all the dimensions are multiplied by 4 , what will the area of the new triangle be?
19. The length and width of a rectangular pyramid are doubled, and the height is tripled. How many times larger is the new pyramid than the original?
20. The dimensions of a cube are increased so that they are 2.5 times longer. If the original cube had a volume of $8 \mathrm{in}^{3}$, what is the volume of the new cube?

Practice:

Solve each.

1. The area of a circle is $30 \mathrm{in}^{2}$. If you triple the circle's radius, what will its new area be?
2. When a hexagon has 2 -inch sides, its area is about $10.4 \mathrm{in}^{2}$. What will be the approximate area of a hexagon whose sides are 10 inches long??
3. A rectangular prism has a volume of $17 \mathrm{~cm}^{2}$. If you double the length and width, but leave the height unchanged, what will be the volume of the new prism?
4. If you want to double the area of a square, by what percent should you increase the length of its sides.
hint: Try using a 10-inch square, double its area, and find the length of the sides of the new square.
5. The volume of the regular dodecahedron below with an edge length of 4-inches is about $490 \mathrm{in}^{3}$. What would be the volume of a regular dodecahedron whose edges are a foot long?

6. The volume of a cone is $3 \mathrm{in}^{3}$. What would be the volume after each modification below? (each part refers to the original figure).
a. Double the radius only. \qquad
b. Triple the height only. \qquad
c. Double the height and triple the radius. \qquad
d. Increase the height and radius by 50%. \qquad
7. If you want to double the volume of a cube, by what percent should you increase the edge length?
a. 20%
b.23\%
c. 26%
d.30\%
e. 40%

Determine the area of each figure below.
Round to the tenth. Figures not to scale.
1.

1. \qquad
2.

2. \qquad
4.

4. \qquad

Determine the volume for each figure below:
(figures not to scale, round to the tenth)

\qquad

Determine the surface area for each figure below:

(figures not to scale, round to the tenth)

7. Surface Area = \qquad 8. Surface Area = \qquad

Solve each problem involving changing dimensions:

9. A rectangular prism has a volume of $5 \mathrm{~cm}^{3}$. If you triple the length, width, and height, what will the volume of the enlarged prism be?
10.
11. When the radius of a circle is multipled by 4 , the area of the new circle is $40 \mathrm{in}^{3}$. What was the area of the original circle?

10.

11. The volume of a rectangular pyramid is $7 \mathrm{~m}^{3}$. What is the volume of a pyramid that is twice as tall, three times as long, and four times as wide?
12.
13. A cube has edges that are 6 centimeters long. How many times greater is the volume of a cube with 9 centimeter sides?
14.

Pledge and sign:

